Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing.
نویسندگان
چکیده
RNA interference is triggered by small interfering RNA and microRNA, and is a potent mechanism in post-transcriptional regulation for gene expression. GW182 (also known as TNRC6A), an 182-kDa protein encoded by TNRC6A, is important for this process, although details of its function remain unclear. Here, we report a novel 210-kDa isoform of human GW182, provisionally named trinucleotide GW1 (TNGW1) because it contains trinucleotide repeats in its mRNA sequence. TNGW1 was expressed independently of GW182 and was present in human testis and various human cancer cells. Using polyclonal and monoclonal antibodies, we detected TNGW1 in only approximately 30% of GW bodies. Expression of EGFP-tagged TNGW1 in HeLa cells was colocalized to cytoplasmic foci enriched in Ago2 (also known as EIF2C2) and RNA decay factors. Tethering TNGW1 or GW182 to the 3'-UTR of a luciferase-reporter mRNA led to strong repression activity independent of Ago2, whereas the tethered Ago2-mediated suppression was completely dependent on TNGW1 and/or GW182. Our data demonstrated that GW182 and, probably, TNGW1 acted as a repressor in Ago2-mediated translational silencing. Furthermore, TNGW1 might contribute to diversity in the formation and function of GW and/or P bodies.
منابع مشابه
Divergent GW182 functional domains in the regulation of translational silencing
MicroRNA (miRNA)-mediated gene regulation has become a major focus in many biological processes. GW182 and its long isoform TNGW1 are marker proteins of GW/P bodies and bind to Argonaute proteins of the RNA induced silencing complex. The goal of this study is to further define and distinguish the repression domain(s) in human GW182/TNGW1. Two non-overlapping regions, Δ12 (amino acids 896-1219) ...
متن کاملDetection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody.
MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is...
متن کاملSumoylation of Human Argonaute 2 at Lysine-402 Regulates Its Stability
Gene silencing by small RNAs has emerged as a powerful post-transcriptional regulator of gene expression, however processes underlying regulation of the small RNA pathway in vivo are still largely elusive. Here, we identified sumoylation as a novel post-translational modification acting on Ago2, the main effector of small RNA-mediated gene silencing. We demonstrate that Ago2 can be modified by ...
متن کاملThe PICK1 Ca2+ sensor modulates N-methyl-d-aspartate (NMDA) receptor-dependent microRNA-mediated translational repression in neurons
MicroRNAs (miRNAs) are important regulators of localized mRNA translation in neuronal dendrites. The presence of RNA-induced silencing complex proteins in these compartments and the dynamic miRNA expression changes that occur in response to neuronal stimulation highlight their importance in synaptic plasticity. Previously, we demonstrated a novel interaction between the major RNA-induced silenc...
متن کاملMammalian GW220/TNGW1 is essential for the formation of GW/P bodies containing miRISC
The microRNA (miRNA)-induced silencing complex (miRISC) controls gene expression by a posttranscriptional mechanism involving translational repression and/or promoting messenger RNA (mRNA) deadenylation and degradation. The GW182/TNRC6 (GW) family proteins are core components of the miRISC and are essential for miRNA function. We show that mammalian GW proteins have distinctive functions in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 121 Pt 24 شماره
صفحات -
تاریخ انتشار 2008